Status:
Tags: #cards/cmpt225/dataStructures/adt/trees
Links: Binary Tree
Binary Heap
Principles
Strength
?
Finding element with largest/smallest key value
Operations
remove()
?
Time Efficiency
Overall: O($log_2n$)
Visit each level of heap ;; O($log_2n$)
Retrieval ;; O(1)
Public Interface
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// Description: Inserts an element.
boolinsert(ElementType);// Description: Removes the element located at the root and returns it.
// Precondition: Binary heap is not empty.
// Throws EmptyBinaryHeapException if binary heap is empty.
ElementTyperemove();// Description: Returns the element located at the root.
// Precondition: Binary heap is not empty.
// Postcondition: The binary heap is unchanged by this operation.
// Throws EmptyBinaryHeapException if binary heap is empty.
ElementTypemax()const;ElementTypemin()const;// Description: Returns the number of elements stored in the data collection.
// Postcondition: The binary heap is unchanged by this operation.
intgetElementCount()const;
Types
Minimum Binary Heap
?
Complete binary tree
Key value of anode in such heap is < or = to key value of its children
Node’s let and right subtrees are also minimum binary heaps
root contains the element with the smallest key value
Operations
insert()
Algorithm for Max Binary Heap
?
1
2
3
4
5
6
7
8
9
10
11
12
13
indexOfRoot=0indexOfBottom=elementCountinsertnewelement@“bottom”ofheap(@indexOfBottom)elementCount++reHeapUp(indexOfBottom)// If the element has a parent and …
if(indexOfBottom>indexOfRoot)indexOfParent=floor((indexOfBottom–1)/2)// … key value of parent < key value of child then …
if(heap[indexOfParent]>heap[indexOfBottom])//… swap the element with its parent
swapheap[indexOfParent]withheap[indexOfBottom]reHeapUp(indexOfParent)
remove()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
intMinHeap::extractMin(){if(heap_size<=0)returnINT_MAX;if(heap_size==1){heap_size--;returnharr[0];}// Move last element to first then reHeapDown
introot=harr[0];harr[0]=harr[heap_size-1];heap_size--;MinHeapify(0);returnroot;}
Maximum binary heap
?
Complete binary tree
key value of a node in such heap is > or = to key value of its children (if any)
the node’s left and right subtrees are also maximum binary heaps
root contains the element with the largest key value
Operations
insert()
Algorithm for Max Binary Heap
?
1
2
3
4
5
6
7
8
9
10
11
12
13
indexOfRoot=0indexOfBottom=elementCountinsertnewelement@“bottom”ofheap(@indexOfBottom)elementCount++reHeapUp(indexOfBottom)// If the element has a parent and …
if(indexOfBottom>indexOfRoot)indexOfParent=floor((indexOfBottom–1)/2)// … key value of parent < key value of child then …
if(heap[indexOfParent]<heap[indexOfBottom])//… swap the element with its parent
swapheap[indexOfParent]withheap[indexOfBottom]reHeapUp(indexOfParent)
remove()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
indexOfRoot=0callretrieve()(optional)=>returnelementstoredinrootofheap(array[indexOfRoot])replaceelementstoredinrootwithelementstoredatthebottomofheapi.e.,lastelement=>copyelementstoredatthebottom(atindexelementCount-1)intorootofheap=>elementCount–reHeapDown(indexOfRoot)// If the parent has at least a child and …
if(heap[indexOfRoot]isnotaleaf)computeindexofchildrencomparethechildrenandpicklargestchildsetindexOfMaxChildtoindexoflargestchildofroot// … key value of parent < key value of largest child then …
if(heap[indexOfRoot]<heap[indexOfMaxChild])//… swap the parent with its largest child
swapheap[indexOfRoot]withheap[indexOfMaxChild]reHeapDown(indexOfMaxChild)
// Utility method - Recursively put the array back into a min Binary Heap.
template<classElementType>voidBinaryHeap<ElementType>::reHeapUp(unsignedintindexOfBottom){if(indexOfBottom>0){intindexOfParent=floor((indexOfBottom-1)/2);if(elements[indexOfBottom]<=elements[indexOfParent]){//Swap
ElementTypetemp=elements[indexOfParent];elements[indexOfParent]=elements[indexOfBottom];elements[indexOfBottom]=temp;reHeapUp(indexOfParent);}}return;}// end reHeapUp
#### reHeapDown
```cpptemplate<classElementType>voidBinaryHeap<ElementType>::reHeapDown(unsignedintindexOfRoot){unsignedintindexOfMinChild=indexOfRoot;// Find indices of children.
unsignedintindexOfLeftChild=2*indexOfRoot+1;unsignedintindexOfRightChild=2*indexOfRoot+2;// Base case: elements[indexOfRoot] is a leaf as it has no children
if(indexOfLeftChild>elementCount-1)return;// If we need to swap, select the smallest child
if(elements[indexOfRoot]>elements[indexOfLeftChild])indexOfMinChild=indexOfLeftChild;// Check if there is a right child, is it the smallest?
if(indexOfRightChild<elementCount){if(elements[indexOfMinChild]>elements[indexOfRightChild])indexOfMinChild=indexOfRightChild;}// Swap parent with smallest of children.
if(indexOfMinChild!=indexOfRoot){ElementTypetemp=elements[indexOfRoot];elements[indexOfRoot]=elements[indexOfMinChild];elements[indexOfMinChild]=temp;// Recursively put the array back into a heap
reHeapDown(indexOfMinChild);}return;}// end reHeapDown
___References:Created::2022-03-1405:29