John Mavrick's Garden

Search IconIcon to open search

Last updated April 10, 2022

Status: Tags: #archivedCards/cmpt125/bigo Links: CMPT 125 Practice Problems


CMPT 125 Big O Notation Practice Problems

Piazza

Questions

1- Let f(n)=n2+10log2(n). Use the formal definition of big-O notation to prove that f(n)=O(n2).

2

Image from Gyazo ?

  1. Let C=11
  2. We show that f(n)≤C⋅$n^4$ for all n>2.
  3. Indeed, f(n)=$n^4$+$10log^4(n)$≤$n^4$+$10n^4$=$11n^2$=$Cn^4$. [Here we used the fact that log(n)<n for all n<1, let’s say it’s log base 2.]
  4. We showed that f(n)≤$Cn^4$, therefore f=O($n^4$).
3

Let f(n)=$n^2$+10⋅n⋅log4(n). Use the formal definition of big-O notation to prove that f(n)=O($n^2$).
[hint: use the fact that (log2(n))4<n for all n>3]
?

  1. Let C=11
  2. We show that f(n)≤C⋅n⋅$(log2(n))^4$ for all n>3.
  3. Indeed, f(n)=n2+10n⋅(log2(n))4≤n2+10n⋅n=11n2=Cn2. [Here we used the fact that (log2(n))4<n for all n<1.]
  4. We showed that f(n)≤Cn2, therefore f=O(n4).

4- Let f(n)=n2. Prove that it is not true that f=O(n). In order to do it you need to show that for every C>0 you try the definition of big-O will not work. That is, for any C you try if n is large enough then f(n)>cn.

5- Let f(n)=12+22+32+⋯+n2.
Prove that f(n)=O(n3).

6- Let f(n)=1∗2+2∗3+3∗4+…(n−1)∗n.
Prove that f(n)=O(n3).
? it is not true that you can ignore all terms other that the last one. The solution is the following: In the formula f(n) there are total of n/2 terms, each is at most n2. Therefore f(n)≤(n/2)⋅n2<n3.

7- Let f(n)=2+4+6+8+⋯+n. (assume that n is even)
Prove that f(n)=O(n2).
? The sum in the formula for  f(n) has at most n terms, and each of them is at most n. Therefore, f(n)≤n⋅n=n2.

8- Let f(n)=1+2+4+8+16+32+⋯+n. (assume that n is a power of 2)
Prove that f(n)=2n−1. Conclude that f(n)=O(n).
? Let k=log2(n). Then f(n)=1+2+4+8+…2k. Using the sum of geometric series formula we have 1+2+22+23+…2k=2k+1−12−1=2k+1−1=2n−1.

9- Let f(n)=1^3+2^3+3^3+⋯+n3.
Prove that f(n)=O(n4).

10- Suppose that f=O(g) and g=O(h). Prove formally that f=O(h).
? Image from Gyazo|1000

11- Suppose that f=O(h) and g=O(h). Prove formally that f+g=O(h).
? Image from Gyazo|1000

12- Let T(n) be given using the recursive formula: T(n)=T(n/2)+1, T(1)=1.
Prove that T(n)=O(log(n)).
?

13- Let T(n) be given using the recursive formula: T(n)=T(n−1)+n, T(1)=1. Prove that T(n)=O(n^2).
? T(n) = T(n-1)+n = T(n-2) + n-1 + n = T(n-3) + n-2 + n-1 + n = T(n-4) + n-3 + n-2 + n-1 + n … = n + n-1 + n-2 + n-3 … 3 + 2 + 1 = n(n+1)/2 = O(n^2)

14- Let T(n) be given using the recursive formula: T(n)=T(n/2)+n, T(1)=1.
Prove that T(n)=O(n).
?

15- Let T(n) be given using the recursive formula: T(n)=2⋅T(n/2)+n, T(1)=1.
Prove that T(n)=O(nlog(n)).
? T(n) = 2T(n/2) + n = 2(2T(n/$2^2$) + n/2) + n = $2^2$T(n/$2^2$) + 2n = $2^2$(2T(n/$2^3$) + n/4) + 2n = $2^3$T(n/$2^3$) + 3n … = $2^k$T(n/$2^k$) + kn Assume T(n/$2^k$) = T(1) n/$2^k$ = 1 n = $2^k$ k = logn T(n) = $2^k$T(1) + kn T(n) = nx1+nlogn O(nlogn)

16- Let T(n) be given using the recursive formula: T(n)=5⋅T(n−1)+1, T(1)=1.
Prove that T(n)=O(5n).
T(n) = 5T

17- Let T(n) be given using the recursive formula: T(n)=T(n/3)+T(2n/3)+n, T(1)=1. Prove that T(n)=O(nlog(n)).
?

18- Let T(n) be given using the recursive formula: T(n)=T(n/3)+T(2n/3), T(1)=1.
Prove that T(n)=O(n).

T(n) = T(n/3) + T(2n/3) = T(n/9) + T(2n/9)

19- Consider the following function.

1
2
3
4
5
6
int f1 (int n) {
  int sum = 0, i;
  for (i=0; i<n; i++)
    sum += i;
  return sum;
}
  1. Express in Big O
  2. Write the equivalent O(1) function ? Stops when k>=n Assume k>=n k=n O(n)

20- Consider the following function.

1
2
3
4
5
6
int f2 (int n) {
  int sum = 0, i;
  for (i=1; i<n; i=i*2)
    sum += i;
  return sum;
}

Explain in words the functionality of $f2$. ? Returns the series of 1 + $2^1$ + $2^2$ + … + $2^n-1$ + $2^n$

21- f3 gets an array of length n and sets a[i]=$i^2$ for all i

1
2
3
4
void f3 (int* a, int n) {
  for (int i=0; i<n; i++)
    a[i]=i*i;
}

Big-O notation.
Write a function that has the same functionality as f3, runs in O(n) time, but uses only addition, and no multiplication ? i = 1, 2, 3, … k Assume i >= n k = n O(n)

22-

1
2
3
4
5
6
7
int f4 (int n) {
  int sum = 0, i, j;
  for (i=0; i<n; i++)
    for (j=1; j<i; j=j*2)
      sum += 1;
  return sum;
}

Prove O(nlogn) ? Outer loop n iterations (0, 1, 2, 3, … n-1) Inner loop logn iterations. For every i, there is at most log(i) <= log(n)

23- Prove O(n)

1
2
3
4
5
6
7
int f5 (int n) {
  int sum = 0, i, j;
  for (i=1; i<n; i=i*2)
    for (j=1; j<i; j++)
      sum += 1;
  return sum;
}

? For the outer loop we have i=1,2,4,8,16,32…n For each i we have i iterations of the inner loop. Therefore, the total running time is 1+2+4+8+…+n<2n


Backlinks


References:

Created:: 2021-10-22 15:33


Interactive Graph