Status: Tags: #math/calculus/integrals Links: Integral Calculus Notes
Trigonometric Substitution
Used mostly for quadratics inside square roots
Notes
Types of Substitution
Expression | Substitution | Identity |
---|---|---|
$$\sqrt{a^2-x^2}$$ | $$x = a\sin θ$$ | $$1-\sin^2 θ = \cos^2 θ$$ |
$$\sqrt{x^2-a^2}$$ | $$x = a\sec θ$$ | $$\sec^2 θ - 1 = \tan^2 θ$$ |
$$\sqrt{a^2+x^2}$$ | $$x = a\tan θ$$ | $$\tan^2 θ + 1 = \sec^2 θ$$ |
- Where $a>0$ and $x$ is a variable
Steps
- Turn x and dx into appropriate substitutions
- Turn contents of square root into appropriate identities
- Factor out the a value
- Turn contents into identity again and apply square root
- Integrate remaining contents (split or use identities if necessary)
- Map out triangle in QI (find missing value using Pythagorean Theorem)
- Substitue values of $θ$ into x equivalents
Mistakes
- Section J part II
- Set denominator as sec^2x instead of secx
- Maybe I thought x = ^ ?
- Set denominator as sec^2x instead of secx
Anki
START Cloze {1:$\sqrt{a^2-x^2}$::Expression} uses {2:$x = a\sin θ$::Substitution} and {3:$1-\sin^2 θ = \cos^2$ ::Identity} Back: DECK: IntegralCalculus Tags: Calculus
END
START Cloze {$\sqrt{x^2-a^2}$::Expression} uses {$x = a\sec θ$::Substitution} and {$\sec^2 θ - 1 = \tan^2 θ$ ::Identity} Back: DECK: IntegralCalculus Tags: Calculus
END
START Cloze {$\sqrt{a^2+x^2}$::Expression} uses {$x = a\tan θ$::Substitution} and {$\tan^2 θ + 1 = \sec^2 θ$::Identity} Back: DECK: IntegralCalculus Tags: Calculus
END
START Cloze Trigonometric Substitution: {Turn x and dx into appropriate substitutions::Step 1} {Turn contents of square root into appropriate identities::Step 2} {Factor out the a value::Step 3} {Turn contents into identity again and apply square root::Step 4} {Integrate remaining contents (split or use identities if necessary)::Step 5} {Map out triangle in QI (find missing value using Pythagorean Theorem)::Step 6} {Substitue values of $θ$ into x equivalents::Step 7} Back: DECK: IntegralCalculus Tags: Calculus
END
Practice
References:
Created:: 2021-06-12 15:03