Status: Tags: #cards/math232/unit4 Links: Vectors
Vector Space
Principles
? x + y ∈ V • x + y = y + x • (x + y) + z = x + (y + z) • There exists 0 ∈ V, called the zero vector such that x + 0 = x, ∀x ∈ V • For each x ∈ V, there exists −x ∈ V such that x + (−x) = 0 • sx ∈ V • s(tx) = (st)x • (s + t)x = sx + tx • s(x + y) = sx + tx • 1x = x
Examples
References:
Created:: 2022-02-13 15:50